Preview

Medical and Biological Problems of Life Activity

Advanced search

Мathematical model of change of a state of health of the population and demography in uniform territorial and time space

Abstract

To develop mathematical model of change of a state of health of the population and demography in uniform territorial and time space.As material characteristics of individual and public indicators and the joint their changes in system of delivery of health care on maintenance of the state of health of particular persons reflecting it fluctuations served. Irregularity is presented in the form of the piecewise and continuous periods that provides a possibility of planning of the potential public actions connected with the volume of population shift and other studied changes of a state of health.The model of representation of epidemiology as one of forms of manifestation of demographic process and option of mathematical check of a possibility of modeling of the described process with the transition to linear system concerning the gaps occurring at the considered spasmodic changes corresponding in observed processes is the basis for a technique.The new mathematical model reflecting development of change of a state of health of the population is offered it is similar to manifestation of demographic and migratory processes. A control inspection of calculations on a concrete example of the area situated near Moscow with the population of 60 thousand people is carried out. She confirmed a possibility of receiving results with the expected accuracy and stability for justification of planned organizational and administrative decisions on creation of steady process of life support in the considered territory.The mathematical model uniting individual and public changes of a state of health of the population with reflection of conditions of environment of the place of stay and accommodation of the population, feature of the work performed by them, influences of environment (large-scale accidents, infections, pandemics, professional harm) and other indicators for life support and activity of this population is developed.

About the Authors

V. P. Nevzorov
ФГБУ «ГНЦ РФ - ФМБЦ им. А.И. Бурназяна» ФМБА России
Russian Federation


T. M. Bulanova
ФГБУ «ГНЦ РФ - ФМБЦ им. А.И. Бурназяна» ФМБА России
Russian Federation


V. V. Pyrvu
ФГБУ «ГНЦ РФ - ФМБЦ им. А.И. Бурназяна» ФМБА России
Russian Federation


References

1. Марчук, Г.И. Математические модели в иммунологии / Г.И. Марчук; Вычисл. методы и эксперименты. Изд. 3. М.: Наука. - 1991. - 299 с.

2. Эпидемиология в современном понимании / В.П. Невзоров [и др.] // «Психология. Спорт. Здравоохранение: сборник избранных статей по материалам Международной научной конференции». - Санкт-Петербург. - 2021. - С. 25-30. DOI 10.37539/PSM295.2021.32.16.001

3. Башенин, В.А. Общая эпидемиология / В.А. Башенин - Ленинград: Медгиз, 1958.

4. Булатов Р.Б. О проблемах российского законодательства в сфере правовой защиты вынужденных мигрантов / Р.Б. Булатов, С.Ю. Андрейцо // Конституционное и муниципальное право. - 2016. - № 9. - С. 35-38.

5. Public health for mass gatherings: Key considerations: Geneva: World Health Organization; 2015.(http://apps.who.int/iris/bitstream/10665/162109/1/WHO_HSE_GCR_2015.5_eng.pdf?ua=1&ua=1, accessed 11 August 2020).

6. Hosting of mass gathering events during the 2013-2016 Ebola virus outbreak in West Africa: experience from three African countries / L. Blumberg [et al.] // Int J Infect Dis. - 2016. - Vol. 47. - P. 38- 41 (https://www.sciencedirect.eom/science/artide/pii/SI201971216310955#, accessed 12 August 2020).

7. Катаева, О.В. Проблема вынужденной миграции в современном мире и административно-правовой статус беженцев в Российской Федерации / О.В. Катаева, И.Н. Озеров // Вестник ВГУ. - 2018. - № 1(32). - С. 84-89.

8. Эльсгольц, Л.Э. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом / Л.Э. Эльсгольц, С.Б. Норкин; М.: Наука. - 1971.- 296 с.

9. Владимиров, В.С. Обобщающие функции в математической физике / В.С. Владимиров; М.: Наука. - 1979. - 320 с.

10. Belykh, L.N. Chronic forms of a disease and their treatment according to mathematical immune response models / L.N. Belykh, G.I. Marchuk // Modelling and Optimization of Complex System. - 2005. - Vol. 18. - P. 79-86; doi:10.1007/bfb0004153.

11. Горбунов, А.Д. О методах типа Адамса приближенного решения задачи Коши для обыкновенных дифференциальных уравнений с запаздыванием / А.Д. Горбунов, В.Н. Попов // Журнал вычислительной математики и математической физики. - 1964. - № 4. - С. 135-148.

12. Belykh, L.N. On the computation methods in disease models / L.N. Belykh // Mathematical Modeling in Immunology and Medicine. North-Holland, Amsterdam-New York-Oxford, 1983. - P. 79-84.

13. Wright, W.M. Explicit general linear methods with inherent Runge-Kutta stability / W.M. Wright // Numer. Algorithms. - 2012. - Vol. 31. - P. 381-399.

14. Свидетельство о государственной регистрации программы для ЭВМ № 2019662133 «Оценка изменений (колебаний) состояния здоровья человека» (дата государственной регистрации в Реестре программ для ЭВМ 17 сентября 2019).

15. Невзоров, В.П. Диагностика метаболического синдрома / В.П. Невзоров //Республиканская научно-практическая конференция с международным участием: «Метаболический синдром и другие категории дисметаболизма». - Ташкент, - 2018. - 80 с.


Review

For citations:


Nevzorov V.P., Bulanova T.M., Pyrvu V.V. Мathematical model of change of a state of health of the population and demography in uniform territorial and time space. Medical and Biological Problems of Life Activity. 2021;(2):53-62. (In Russ.)

Views: 76


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-2088 (Print)