1. Microglia are polarized to M1 type in highanxiety inbred mice in response to lipopolysaccharide challenge / Z. Li [et al.] // Brain Behav. Immun. - 2014. - Vol.38. - P. 237-248. https://doi.org/10.1016/j.bbi.2014.02.008
2. Long-term cognitive impairment and functional disability among survivors of severe sepsis / T.J. Iwashyna [et al.] // JAMA. - 2010. - Vol. 304. - P. 1787-1794. https://doi.org/10.1001/jama.2010.1553
3. Systemic inflammation and disease progression in Alzheimer disease / C. Holmes [et al.] // Neurology 2009. - Vol. 73. - P. 768-774. https://doi.org/10.1212/WNL.0b013e3181b6bb95
4. Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain / B. Brugg [et al.] // Proc. Natl. Acad. Sci. U.S.A. 1995. - Vol. 92. - P. 3032-3035. https://doi.org/10.1073/pnas.92.7.3032
5. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurode-generative disease / C. Cunningham [et al.] // Biol. Psychiatry 2009. - Vol. 65. - P. 304-312. https://doi.org/10.1016/j.biopsych.2008.07.024
6. Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease / M.C. Pott Godoy [et al.] // Brain 2008. - Vol.131(Pt 7). - P. 1880-1894. https://doi.org/10.1093/brain/awn101
7. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs / S. Achard [et al.] // J. Neurosci. 2006. - Vol. 26. - P. 63-72. https://doi.org/10.1523/JNEUROSCI.3874-05.2006
8. Bullmore, E. Complex brain networks: graph theoretical analysis of structural and functional systems / E. Bullmore, O. Sporns // Nat. Rev. Neurosci. - 2009. - Vol. 10. - P. 186-198. https://doi.org/10.1038/nrn2575
9. Mapping the human connectome / A.W. Toga [et al.] // Neurosurgery. - 2012. - Vol. 71. - P. 1-5. https://doi.org/10.1227/NEU.0b013e318258e9ff
10. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity / U. Fünfschilling [et al.] // Nature. - 2012. - Vol. 485. - P. 517-521. https://doi.org/10.1038/nature11007
11. Oligodendroglia metabolically support axons and contribute to neurodegeneration / Y. Lee [et al.] // Nature. - 2012. - Vol. 487. - P. 443-448. https://doi.org/10.1038/nature11314
12. Brain lesions in septic shock: a magnetic resonance imaging study / T. Sharshar [et al.] // Intensive Care Med. - 2007. - Vol. 33. - P. 798-806. https://doi.org/10.1007/s00134-007-0598-y
13. The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study / A. Morandi [et al.] // Crit. Care Med. - 2012. - Vol. 40 - P. https://doi.org/-2189.doi:10.1097/CCM.0b013e318250acdc
14. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors / A. Semmler [et al.] // J. Neurol. Neurosurg. Psychiatr. - 2013. - Vol. 84. - P. 62-69. https://doi.org/10.1136/jnnp-2012-302883
15. Sepsis induces brain mitochondrial dysfunction / J.C. d’Avila [et al.] // Crit. Care Med. - 2008. - Vol. 36. - P. 1925-1932. https://doi.org/10.1097/CCM.0b013e3181760c4b
16. Alterations in inflammatory mediators, oxidative stress parameters and energetic metabolism in the brain of sepsis survivor rats / C.M. Comim [et al.] // Neurochem. Res. - 2011. - Vol. 36. - P. 304-311. https://doi.org/10.1007/s11064-010-0320-2
17. Singer, M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure / M. Singer // Virulence. - 2014. - Vol. 5. - P. 66-72. https://doi.org/10.4161/viru.26907
18. Understanding brain dysfunction in sepsis / R. Sonneville [et al.] // Ann. Intensive Care. - 2013. - Vol. 3. - P. 15. https://doi.org/10.1186/2110-5820-3-15
19. Ben Salem, C. The pathogenesis of the antiphospholipid syndrome / C. Ben Salem / N. Engl. J. Med. - 2013. - Vol. 368. - P. 2334. https://doi.org/10.1056/NEJMc1304515
20. Million, M. The pathogenesis of the antiphospholipid syndrome / M. Million, D. Raoult // N. Engl. J. Med. - 2013. - Vol. 368. - P. 2335. https://doi.org/10.1056/NEJMc1300484
21. Cognitive deficits in patients with antiphospholipid syndrome: association with clinical, laboratory, and brain magnetic resonance imaging findings / M.G. Tektonidou [et al.] // Arch. Intern. Med. - 2006. - Vol. 166. - P. 2278-2284. https://doi.org/10.1001/archinte.166.20.2278
22. Cerebral changes in SLE with or without antiphospholipid syndrome. A case-control MRI study / S.I. Valdés-Ferrer [et al.] // J. Neuroimaging. - 2008. - Vol. 18. - P. 62-65. https://doi.org/10.1111/j.1552-6569.2007.00183.x
23. Medzhitov, R. Disease tolerance as a defense strategy / R. Medzhitov, D.S. Schneider, M.P. Soares // Science. - 2012. - Vol. 335. - P. 936-941. https://doi.org/10.1126/science.1214935
24. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. / M. Schwartz, K. Baruch // EMBO J. - 2014. - Vol. 33. - P. 7-22. https://doi.org/10.1002/embj.201386609
25. Immunogenic and tolerogenic cell death / D.R. Green [et al.] // Nat. Rev. Immunol. - 2009. - Vol. 9. - P. 353-363. https://doi.org/10.1038/nri2545
26. Zitvogel, L. Decoding cell death signals in inflammation and immunity / L. Zitvogel, O. Kepp, G. Kroemer // Cell. - 2010. - Vol. 140. - P. 798-804. https://doi.org/10.1016/j.cell.2010.02.015
27. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases / F. Martinon, J. Tschopp // Cell. - 2004. - Vol. 117. P. 561-574. https://doi.org/10.1016/j.cell.2004.05.004
28. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice / M.T. Heneka [et al.] // Nature. - 2013. - Vol. 493. - P. 674-678. https://doi.org/10.1038/nature11729
29. Caspase signalling controls microglia activation and neurotoxicity / M.A. Burguillos [et al.] // Nature. - 2011. - Vol. 472. - P. 319-324. https://doi.org/10.1038/nature09788
30. Yee, C. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans / C. Yee, W. Yang, S. Hekimi // Cell. - 2014. - Vol. 157. - P. 897-909. https://doi.org/10.1016/j.cell.2014.02.055
31. IL-18 associates to microvesicles shed from human macrophages by a LPS/TLR-4 independent mechanism in response to P2X receptor stimulation / S. Gulinelli [et al.] // Eur. J. Immunol. - 2012. - Vol. 42. - P. 3334-3345. https://doi.org/10.1002/eji.201142268
32. Myeloid microvesicles are a marker and therapeutic target for neuroinflammation / C. Verderio [et al.] // Ann. Neurol. - 2012. - Vol. 72. - P. 610-624. https://doi.org/10.1002/ana.23627
33. Microglia convert aggregated amyloid-[beta] into neurotoxic forms through the shedding of microvesicles / P. Joshi [et al.] // Cell Death Differ. - 2014. - Vol. 21. - P. 582-593. https://doi.org/10.1038/cdd.2013.180
34. Rego, A.C. Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases / A.C. Rego, C.R. Oliveira // Neurochem. Res. - 2003. - Vol. 28. - P. 1563-1574. https://doi.org/10.1023/A:1025682611389
35. Green, D.R. The pathophysiology of mitochondrial cell death / D.R. Green, G. Kroemer // Science. - 2004. - Vol. 305. - P. 626-629. https://doi.org/10.1126/science.1099320
36. Greenlund, L. J. Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death / L.J. Greenlund, T.L. Deckwerth, E.M.Jr. Johnson // Neuron 1995. - Vol. 14. - P. 303-315. https://doi.org/10.1016/0896-6273(95)90287-2
37. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain / C. Kaur [et al.] // Brain Struct. Funct. - 2014. - Vol. 219. - P. 151-170. https://doi.org/10.1007/s00429-012-0491-5
38. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. / O. Aktas [et al.] // Neuron. - 2005. - Vol. 46. - P. 421- 432. https://doi.org/10.1016/j.neuron.2005.03.018
39. Depressive-like behavior induced by tumor necrosis factor-α in mice / M.P. Kaster [et al.] // Neuropharmacology. - 2012. - Vol. 62. - P. 419-426. https://doi.org/10.1016/j.neuropharm.2011.08.018
40. From inflammation to sickness and depression: when the immune system subjugates the brain / R. Dantzer [et al.] // Nat. Rev. Neurosci. - 2008. - Vol. 9. - P. 46-56. https://doi.org/10.1038/nrn2297
41. Block, M.L. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms / M.L. Block, L. Zecca, J.S. Hong // Nat. Rev. Neurosci. - 2007. - Vol. 8. - P. 57-69. https://doi.org/10.1038/nrn2038
42. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease / X. Liang [et al.] // J. Neurosci. 2005. - Vol. 25. - P. 10180-10187. https://doi.org/10.1523/JNEUROSCI.3591-05.2005
43. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer’s disease models / J.U. Johansson [et al.] // J. Clin. Invest. - 2015. - Vol. 125. - P. 350-364. https://doi.org/10.1172/JCI77487
44. Schmitt, C. Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain / C. Schmitt, N. Strazielle, J.F. Ghersi- Egea // J. Neuroinflammation. - 2012. - Vol. 9. - P. 187. https://doi.org/10.1186/1742-2094-9-187
45. Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases / H. Neumann [et al.] // Trends Neurosci. - 2002. - Vol. 25. - P. 313-319. https://doi.org/10.1016/S0166-2236(02)02154-9
46. Direct impact of T cells on neurons revealed by two-photon microscopy in living brain tissue. / R. Nitsch [et al.] // J. Neurosci. - 2004. - Vol. 24. - P. 2458-2464. https://doi.org/10.1523/JNEUROSCI.4703-03.2004
47. Brain-reactive antibodies and disease / B. Diamond [et al.] // Annu. Rev. Immunol. - 2013. - Vol. 31. - P. 345-385. https://doi.org/10.1146/annurev-immunol-020711-075041
48. Neuromyelitis optica unique area postrema lesions: nausea, vomiting, and pathogenic implications / B.F. Popescu [et al.] // Neurology. - 2011. - Vol. 76. - P. 1229-1237. https://doi.org/10.1212/WNL.0b013e318214332c
49. Evidence for stroke-induced neurogenesis in the human brain / K. Jin [et al.] // Proc. Natl. Acad. Sci. U.S.A. - 2006. - Vol. 103. - P. 13198-13202. https://doi.org/10.1073/pnas.0601164103
50. Lazarov, O. Neurogenesis and Alzheimer’s disease: at the crossroads / O. Lazarov, R.A. Marr // Exp. Neurol. - 2010. - Vol. 223. - P. 267-281. https://doi.org/10.1016/j.expneurol.2009.08.009
51. Sahay, A. Adult hippocampal neurogenesis in depression / A. Sahay, R. Hen // Nat. Neurosci. - 2007. - Vol. 10. - P. 1110-1115. https://doi.org/10.1038/nn1969
52. Donepezil, an acetylcholinesterase inhibitor, enhances adult hippocampal neurogenesis / S. Kotani [et al.] // Chem. Biol. Interact. - 2008. - Vol. 175. - P. 227-230. https://doi.org/10.1016/j.cbi.2008.04.004
53. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants / L. Santarelli [et al.] // Science. - 2003. - Vol. 301. - P. 805-809. https://doi.org/10.1126/science.1083328
54. Monje, M.L. Inflammatory blockade restores adult hippocampal neurogenesis / M.L. Monje, H. Toda, T.D. Palmer // Science. - 2003. - Vol. 302. - P. 1760-1765. https://doi.org/10.1126/science.1088417