The role N-acetylcysteine (nac) in the therapy of diseases characterized by oxidative stress (literature review)
https://doi.org/10.58708/2074-2088.2023-2(30)-6-16
Abstract
Oxidative stress is a ubiquitous cellular process that results in damage to various biological molecules and it is involved in the etiopathogenesis of many diseases. The sulfhydryl-containing tripeptide glutathione (GSH), which is synthesized and maintained in high concentrations in all cells, is a component of one of the defense mechanisms. N-acetylcysteine, a synthetic derivative of the endogenous amino acid L-cysteine and a precursor of GSH, has been used for several decades as a mucolytic and antidote for acetaminophen (paracetamol) poisoning. As a mucolytic, N-acetylcysteine breaks the disulfide bonds of highly cross-linked mucins, thereby reducing the viscosity of the mucus. As an antidote for acetaminophen poisoning, N-acetylcysteine restores the hepatic GSH pool depleted during drug detoxification. More recently, enhance knowledge of N-acetylcysteine’s mechanisms of action has expanded its clinical use. This publication presents an overview of the most relevant and recent data on the clinical use of N-acetylcysteine in transplantology, neurology and ophthalmology.
About the Authors
S. V. ZyblevaBelarus
Yu. I. Rozhko
Belarus
A. V. Zharikova
Belarus
B. O. Kabeshev
Belarus
S. L. Zyblev
Belarus
References
1. Sies, H. Oxidative stress / H. Sies, C. Berndt, D.P. Jones // Annu. Rev. Biochem. – 2017. – Vol. 86. – P. 715-748.
2. The Eye, oxidative damage and polyunsaturated fatty acids / S.C. Saccà [et al.] // Nutrients. – 2018. – № 10. – Р. 668.
3. Understanding oxidants and antioxidants: Classical team with new players / S.S. Ali [et al.] // J. Food Biochem. – 2020. – Vol. 44. – P. 13145.
4. Mirończuk-Chodakowska, I. Endogenous non-enzymatic antioxidants in the human body / I. Mirończuk-Chodakowska, A.M. Witkowska, M.E. Zujko // Adv. Med. Sci. – 2018. – Vol. 63. – Р. 68-78.
5. Induction of oxidative stress in human aqueous and vitreous humors by Nd:YAG laser posterior capsulotomy / L. Bergandi [et al.] // Int. J. Ophthalmol. – 2018. – Vol. 11. – P. 1145-1151.
6. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases / Y.J. Hsueh [et al.] // Int J Mol Sci. – 2022. – Vol. 23, № 3. – P. 1255.
7. Rushworth, G.F. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits / G.F. Rushworth, I.L. Megson // Pharmacol. Ther. – 2014. – Vol. 141, № 2. – P. 150-159.
8. Bavarsad Shahripour, R. N-acetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities / R. Bavarsad Shahripour, M.R. Harrigan, A.V. Alexandrov // Brain Behav. – 2014. – Vol. 4, № 2. – P. 108-122.
9. The therapeutic use of N-acetylcysteine (NAC) in medicine / R.E. Frye, [et al.] ; ed.: R.E. Frye, M. Berk. – Singapore: Springer Nature. Pharmacology, Formulations, and Adverse Effects, 2019. – 392 p.
10. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why / G. Aldini [et al.] // Free Radic. Res. – 2018. – Vol. 52, № 7. – P. 751-762.
11. The chemistry and biological activities of N-acetylcysteine / Y. Samuni [et al.] // Biochim. Biophys. Acta. – 2013. – Vol. 1830, № 8. – P. 4117-4129.
12. Ischemia and reperfusion injury in renal transplantation: hemodynamic and immunological paradigms / L.R. Requião-Moura [et al.] // Einstein (Sao Paulo). – 2015. – Vol. 13, № 1. – P. 129-135.
13. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury / M.B. Jiménez-Castro [et al.] // Cells. – 2019. – Vol. 8, № 10. – P. 1131-1157.
14. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside / Y. Zhai [et al.] // Nat Rev Gastroenterol Hepatol. – 2013. – Vol. 10, № 2. – P. 79-89.
15. Moving forwards by blocking backflow: the yin and yang of MI therapy / V.R. Pell [et al.] // Circ Res. – 2016. – Vol. 118, № 5. – P. 898-906.
16. Effect of a combined drug approach on the severity of ischemia-reperfusion injury during liver transplant: A randomized clinical trial / N. Meurisse [et al.] // JAMA Netw Open. – 2023. – Vol. 6, № 2. – P. 230819.
17. GSH attenuates organ injury and improves function after transplantation of fatty livers / S. Pratschke [et al.] // Eur Surg Res. – 2010. – Vol. 45. – P. 13-19.
18. Use of N-acetylcysteine during liver procurement: a prospective randomized controlled study / F. D’Amico [et al.] // Liver Transpl. – 2013. – Vol. 19, № 2. – P. 135-144.
19. Impact of sevoflurane and acetylcysteine on ischemia-reperfusion injury of the liver from brain-dead donor / A.E. Shcherba [et al.] // Russian Journal of Transplantology and Artificial Organs. – 2013. – Vol. 15, № 1. – P. 39-44 (In Russ.).
20. Методы коррекции ишемически-реперфузионного повреждения маргинальных трансплантатов печени / М.М. Савчук [и др.] // Хирургия. Вост. Европа. – 2014. – № 3. – С. 30-44.
21. Clinical trials of Nacetylcysteine in psychiatry and neurology: A systematic review / S. J. Deepmala [et al.] // Neurosci. Biobehav. Rev. – 2015. – Vol. 55. – P. 294-321.
22. N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/ G30 transgenic mice / D.M. Otte [et al.] // Neuropsychop-harmacology. – 2011. – Vol. 36, № 11. – P. 2233-2243.
23. N-acetylcysteine prevents spatial memory impairment induced by chronic early postnatal glutaric acid and lipopolysaccharide in rat pups / F.S. Rodrigues [et al.] // PLoS One. – 2013. – Vol. 8, № 10. – P. 78332.
24. Cao, L. N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice / L. Cao, L. Li, Z. Zuo // Neuroscience. – 2012. – Vol. 220. – P. 85-89.
25. Tardiolo, G. Overview on the effects of n-ace-tylcysteine in neurodegenerative diseases / G. Tardiolo, P. Bramanti, E. Mazzon // Molecules. – 2018. – Vol. 23, № 12. – P. 3305.
26. Bliss, T.V. Synaptic plasticity in health and disease: Introduction and overview / T.V. Bliss, G.L. Collingridge, R.G. Morris // Philos. Trans. R. Soc. Lond. B Biol. – 2013. – Vol. 363. – P. 1633.
27. Chiechio, S. Modulation of chronic pain by metabotropic glutamate receptors / S. Chiechio // Adv. Pharmacol. – 2016. – Vol. 75. – P. 63-89.
28. N-acetyl-cysteine causes analgesia by rein-forcing the endogenous activation of type-2 metabotropic glutamate receptors / M. Bernabucci [et al.] // Mol. Pain. – 2012. – № 8. – P. 77.
29. N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases / J. Li [et al.] // Pain. – 2017. – Vol. 157, № 8. – P. 1711-1723.
30. N-acetylcysteine downregulates phosphoryl-ated p-38 expression but does not reverse the increased superoxide anion levels in the spinal cord of rats with neuropathic pain / A. Horst [et al.] // Braz. J. Med. Biol. Res. – 2017. – Vol. 50, № 2. – P. 5801.
31. Sözbir, E. Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain / E. Sözbir, M. Nazıroğlu // Metab. Brain Dis. – 2016. – Vol. 31, № 2. – P. 385+393.
32. N-acetyl-cysteine, a drug that enhances the endogenous activation of group-II metabotropic glutamate receptors, inhibits nociceptive transmission in humans / A. Truini [et al.] // Mol. Pain. – 2015. – Vol. 11. – P. 14.
33. Visser, Е. Reduction in migraine and headache frequency and intensity with combined antioxidant prophylaxis (n-acetylcysteine, vitamin e, and vitamin C ): a randomized sham-controlled pilot study / Е. Visser, P. Drummond, J. Visser // Pain Pract. – 2020. – Vol. 20, № 7. – P. 737-747.
34. Repeated-dose oral N-acetylcysteine in parkinson’s disease: Pharmacokinetics and effect on brain glutathione and oxidative stress / L.D. Coles [et al.] // J. Clin. Pharmacol. – 2018. – Vol. 58. – P. 158-167.
35. Nita, M. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the agerelated ocular diseases and other pathologies of the anterior and posterior eye segments in adults / M. Nita, A. Grzybowski // Oxidative Med. Cell. Longev. – 2016. – Vol. 2016. – P. 3164734.
36. Role of oxidative, nitrative, and chlorinative protein modifications in aging and agerelated diseases / I. Sadowska-Bartosz [et al.] // Oxidative Med. Cell. Longev. – 2017. – Vol. 2018. – P. 3267898.
37. Umapathy, A. Antioxidant delivery pathways in the anterior eye / A. Umapathy, P. Donaldson, J. Lim // Biomed Res. Int. – 2013. – Vol. 2013. – P. 207250.
38. Novel roles for the lens in preserving overall ocular health / J. C. Lim [et al.] // Exp. Eye Res. – 2017. – Vol. 156. – P. 117-123.
39. Association of serum uric acid levels with primary open-angle glaucoma: A 5-year case-control study / S. Li [et al.] // Acta Ophthalmol. – 2019. – Vol. 97. – P. 356-363.
40. Relationship between oxidative stress biomarkers and visual field progression in patients with primary angle closure glaucoma / S. Li [et al.] // Oxidative Med. Cell. Longev. – 2020. – Vol. 2020. – P. 2701539.
41. Analysis of aqueous humor total antioxidant capacity and its correlation with corneal endothelial health / Y.T. Tsao [et al.] // Bioeng. Transl. Med. – 2021. – № 6. – P. 10199.
42. Quantitative metabolomic analysis of changes in the lens and aqueous humor under development of age-related nuclear cataract / V.V. Yanshole [et al.] // Metabolomics. – 2019. – Vol. 15. – P. 29.
43. The role of topical N-acetylcysteine in ocular therapeutics / Y. Eghtedari [et al.] // Surv. Ophthalmol. – 2022. – Vol. 67. – P. 608-622.
44. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa / J. Shen [et al.] // J. Cell. Physiol. – 2005. – Vol. 203, № 3. – P. 457-464.
45. N-Acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa / S.Y. Lee [et al.] // J. Cell. Physiol. – 2011. – Vol. 226, № 7. – P. 1843-1849.
46. Altered antioxidant-oxidant status in the aqueous humor and peripheral blood of patients with retinitis pigmentosa / C. Martínez-Fernández de la Cámara [et al.] // PLoS One. – 2013. – Vol. 8, № 9. – P. 74223.
47. Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase I trial / P.A. Campochiaro [et al.] // J. Clin. Invest. – 2020. – Vol. 130. № 3. – P. 1527-1541.
48. N-acetylcysteine in chronic blepharitis / E. Yalcin [et al.] // Cornea. – 2002. – Vol. 21, № 2. – P. 164-168.
49. The multifaceted therapeutic role of N-acetyl-cysteine (NAC) in disorders characterized by oxidative stress / G. Raghu [et al.] // Curr Neuropharmacol. – 2021. – Vol. 19, № 8. – P. 1202-1224.
50. N-acetylcysteine for antioxidant therapy: Pharmacology and clinical utility / S. Dodd [et al.] // Expert Opin. Biol. Ther. – 2008. – Vol. 8, № 12. – P. 1955-1962.
51. European Medicines Agency (EMA) Fluimicil Mucolytic (N-acetylcysteine): Summary of product characteristics [Electronic resource]: 2017. – Mode of access: – Date of access: 14.02.2019. (accessed 14 February, 2019).
52. Infusion with the antioxidant N-acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle / A.C. Petersen [et al.] // Acta Physiol. – 2012. – Vol. 204. № 3. – P. 382-392.
53. Antioxidant nutraceutical strategies in the prevention of oxidative stress related eye diseases / U. Rodella [et al.] // Nutrients. – 2023. – Vol. 15, № 10. – P. 2283.
Review
For citations:
Zybleva S.V., Rozhko Yu.I., Zharikova A.V., Kabeshev B.O., Zyblev S.L. The role N-acetylcysteine (nac) in the therapy of diseases characterized by oxidative stress (literature review). Medical and Biological Problems of Life Activity. 2023;(2):6-16. (In Russ.) https://doi.org/10.58708/2074-2088.2023-2(30)-6-16