Роль N-ацетилцистеина в терапии заболеваний, характеризующихся окислительным стрессом (обзор литературы)
https://doi.org/10.58708/2074-2088.2023-2(30)-6-16
Аннотация
Окислительный стресс представляет собой повсеместно распространенный клеточный процесс, который приводит к повреждению различных биологических молекул и вовлечен в этиопатогенез многих заболеваний. Сульфгидрил-содержащий трипептид глутатион (GSH), который синтезируется и поддерживается в высоких концентрациях во всех клетках, является компонентом одного из защитных механизмов. N-ацетилцистеин, синтетическое производное эндогенной аминокислоты L-цистеина и предшественник GSH, используется в течение нескольких десятилетий в качестве муколитика и антидота при отравлении ацетаминофеном (парацетамолом). Как муколитик N-ацетилцистеин разрушает дисульфидные связи сильно сшитых муцинов, тем самым снижая вязкость слизи. В качестве противоядия при отравлении ацетаминофеном N-ацетилцистеин восстанавливает печеночный пул GSH, истощенный в процессе детоксикации препарата. Совсем недавно улучшенные знания о механизмах действия N-ацетилцистеина расширили его клиническое использование. В данной публикации мы представили обзор наиболее актуальных и последних данных о клиническом применении N-ацетилцистеина в трансплантологии, неврологии и офтальмологии.
Об авторах
С. В. ЗыблеваБеларусь
ученый секретарь научного отдела
г. Гомель
Ю. И. Рожко
Беларусь
г. Гомель
А. В. Жарикова
Беларусь
г. Гомель
Б. О. Кабешев
Беларусь
г. Гомель
С. Л. Зыблев
Беларусь
г. Гомель
Список литературы
1. Sies, H. Oxidative stress / H. Sies, C. Berndt, D.P. Jones // Annu. Rev. Biochem. – 2017. – Vol. 86. – P. 715-748.
2. The Eye, oxidative damage and polyunsaturated fatty acids / S.C. Saccà [et al.] // Nutrients. – 2018. – № 10. – Р. 668.
3. Understanding oxidants and antioxidants: Classical team with new players / S.S. Ali [et al.] // J. Food Biochem. – 2020. – Vol. 44. – P. 13145.
4. Mirończuk-Chodakowska, I. Endogenous non-enzymatic antioxidants in the human body / I. Mirończuk-Chodakowska, A.M. Witkowska, M.E. Zujko // Adv. Med. Sci. – 2018. – Vol. 63. – Р. 68-78.
5. Induction of oxidative stress in human aqueous and vitreous humors by Nd:YAG laser posterior capsulotomy / L. Bergandi [et al.] // Int. J. Ophthalmol. – 2018. – Vol. 11. – P. 1145-1151.
6. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases / Y.J. Hsueh [et al.] // Int J Mol Sci. – 2022. – Vol. 23, № 3. – P. 1255.
7. Rushworth, G.F. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits / G.F. Rushworth, I.L. Megson // Pharmacol. Ther. – 2014. – Vol. 141, № 2. – P. 150-159.
8. Bavarsad Shahripour, R. N-acetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities / R. Bavarsad Shahripour, M.R. Harrigan, A.V. Alexandrov // Brain Behav. – 2014. – Vol. 4, № 2. – P. 108-122.
9. The therapeutic use of N-acetylcysteine (NAC) in medicine / R.E. Frye, [et al.] ; ed.: R.E. Frye, M. Berk. – Singapore: Springer Nature. Pharmacology, Formulations, and Adverse Effects, 2019. – 392 p.
10. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why / G. Aldini [et al.] // Free Radic. Res. – 2018. – Vol. 52, № 7. – P. 751-762.
11. The chemistry and biological activities of N-acetylcysteine / Y. Samuni [et al.] // Biochim. Biophys. Acta. – 2013. – Vol. 1830, № 8. – P. 4117-4129.
12. Ischemia and reperfusion injury in renal transplantation: hemodynamic and immunological paradigms / L.R. Requião-Moura [et al.] // Einstein (Sao Paulo). – 2015. – Vol. 13, № 1. – P. 129-135.
13. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury / M.B. Jiménez-Castro [et al.] // Cells. – 2019. – Vol. 8, № 10. – P. 1131-1157.
14. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside / Y. Zhai [et al.] // Nat Rev Gastroenterol Hepatol. – 2013. – Vol. 10, № 2. – P. 79-89.
15. Moving forwards by blocking backflow: the yin and yang of MI therapy / V.R. Pell [et al.] // Circ Res. – 2016. – Vol. 118, № 5. – P. 898-906.
16. Effect of a combined drug approach on the severity of ischemia-reperfusion injury during liver transplant: A randomized clinical trial / N. Meurisse [et al.] // JAMA Netw Open. – 2023. – Vol. 6, № 2. – P. 230819.
17. GSH attenuates organ injury and improves function after transplantation of fatty livers / S. Pratschke [et al.] // Eur Surg Res. – 2010. – Vol. 45. – P. 13-19.
18. Use of N-acetylcysteine during liver procurement: a prospective randomized controlled study / F. D’Amico [et al.] // Liver Transpl. – 2013. – Vol. 19, № 2. – P. 135-144.
19. Impact of sevoflurane and acetylcysteine on ischemia-reperfusion injury of the liver from brain-dead donor / A.E. Shcherba [et al.] // Russian Journal of Transplantology and Artificial Organs. – 2013. – Vol. 15, № 1. – P. 39-44 (In Russ.).
20. Методы коррекции ишемически-реперфузионного повреждения маргинальных трансплантатов печени / М.М. Савчук [и др.] // Хирургия. Вост. Европа. – 2014. – № 3. – С. 30-44.
21. Clinical trials of Nacetylcysteine in psychiatry and neurology: A systematic review / S. J. Deepmala [et al.] // Neurosci. Biobehav. Rev. – 2015. – Vol. 55. – P. 294-321.
22. N-acetyl cysteine treatment rescues cognitive deficits induced by mitochondrial dysfunction in G72/ G30 transgenic mice / D.M. Otte [et al.] // Neuropsychop-harmacology. – 2011. – Vol. 36, № 11. – P. 2233-2243.
23. N-acetylcysteine prevents spatial memory impairment induced by chronic early postnatal glutaric acid and lipopolysaccharide in rat pups / F.S. Rodrigues [et al.] // PLoS One. – 2013. – Vol. 8, № 10. – P. 78332.
24. Cao, L. N-acetylcysteine reverses existing cognitive impairment and increased oxidative stress in glutamate transporter type 3 deficient mice / L. Cao, L. Li, Z. Zuo // Neuroscience. – 2012. – Vol. 220. – P. 85-89.
25. Tardiolo, G. Overview on the effects of n-ace-tylcysteine in neurodegenerative diseases / G. Tardiolo, P. Bramanti, E. Mazzon // Molecules. – 2018. – Vol. 23, № 12. – P. 3305.
26. Bliss, T.V. Synaptic plasticity in health and disease: Introduction and overview / T.V. Bliss, G.L. Collingridge, R.G. Morris // Philos. Trans. R. Soc. Lond. B Biol. – 2013. – Vol. 363. – P. 1633.
27. Chiechio, S. Modulation of chronic pain by metabotropic glutamate receptors / S. Chiechio // Adv. Pharmacol. – 2016. – Vol. 75. – P. 63-89.
28. N-acetyl-cysteine causes analgesia by rein-forcing the endogenous activation of type-2 metabotropic glutamate receptors / M. Bernabucci [et al.] // Mol. Pain. – 2012. – № 8. – P. 77.
29. N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases / J. Li [et al.] // Pain. – 2017. – Vol. 157, № 8. – P. 1711-1723.
30. N-acetylcysteine downregulates phosphoryl-ated p-38 expression but does not reverse the increased superoxide anion levels in the spinal cord of rats with neuropathic pain / A. Horst [et al.] // Braz. J. Med. Biol. Res. – 2017. – Vol. 50, № 2. – P. 5801.
31. Sözbir, E. Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain / E. Sözbir, M. Nazıroğlu // Metab. Brain Dis. – 2016. – Vol. 31, № 2. – P. 385+393.
32. N-acetyl-cysteine, a drug that enhances the endogenous activation of group-II metabotropic glutamate receptors, inhibits nociceptive transmission in humans / A. Truini [et al.] // Mol. Pain. – 2015. – Vol. 11. – P. 14.
33. Visser, Е. Reduction in migraine and headache frequency and intensity with combined antioxidant prophylaxis (n-acetylcysteine, vitamin e, and vitamin C ): a randomized sham-controlled pilot study / Е. Visser, P. Drummond, J. Visser // Pain Pract. – 2020. – Vol. 20, № 7. – P. 737-747.
34. Repeated-dose oral N-acetylcysteine in parkinson’s disease: Pharmacokinetics and effect on brain glutathione and oxidative stress / L.D. Coles [et al.] // J. Clin. Pharmacol. – 2018. – Vol. 58. – P. 158-167.
35. Nita, M. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the agerelated ocular diseases and other pathologies of the anterior and posterior eye segments in adults / M. Nita, A. Grzybowski // Oxidative Med. Cell. Longev. – 2016. – Vol. 2016. – P. 3164734.
36. Role of oxidative, nitrative, and chlorinative protein modifications in aging and agerelated diseases / I. Sadowska-Bartosz [et al.] // Oxidative Med. Cell. Longev. – 2017. – Vol. 2018. – P. 3267898.
37. Umapathy, A. Antioxidant delivery pathways in the anterior eye / A. Umapathy, P. Donaldson, J. Lim // Biomed Res. Int. – 2013. – Vol. 2013. – P. 207250.
38. Novel roles for the lens in preserving overall ocular health / J. C. Lim [et al.] // Exp. Eye Res. – 2017. – Vol. 156. – P. 117-123.
39. Association of serum uric acid levels with primary open-angle glaucoma: A 5-year case-control study / S. Li [et al.] // Acta Ophthalmol. – 2019. – Vol. 97. – P. 356-363.
40. Relationship between oxidative stress biomarkers and visual field progression in patients with primary angle closure glaucoma / S. Li [et al.] // Oxidative Med. Cell. Longev. – 2020. – Vol. 2020. – P. 2701539.
41. Analysis of aqueous humor total antioxidant capacity and its correlation with corneal endothelial health / Y.T. Tsao [et al.] // Bioeng. Transl. Med. – 2021. – № 6. – P. 10199.
42. Quantitative metabolomic analysis of changes in the lens and aqueous humor under development of age-related nuclear cataract / V.V. Yanshole [et al.] // Metabolomics. – 2019. – Vol. 15. – P. 29.
43. The role of topical N-acetylcysteine in ocular therapeutics / Y. Eghtedari [et al.] // Surv. Ophthalmol. – 2022. – Vol. 67. – P. 608-622.
44. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa / J. Shen [et al.] // J. Cell. Physiol. – 2005. – Vol. 203, № 3. – P. 457-464.
45. N-Acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa / S.Y. Lee [et al.] // J. Cell. Physiol. – 2011. – Vol. 226, № 7. – P. 1843-1849.
46. Altered antioxidant-oxidant status in the aqueous humor and peripheral blood of patients with retinitis pigmentosa / C. Martínez-Fernández de la Cámara [et al.] // PLoS One. – 2013. – Vol. 8, № 9. – P. 74223.
47. Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase I trial / P.A. Campochiaro [et al.] // J. Clin. Invest. – 2020. – Vol. 130. № 3. – P. 1527-1541.
48. N-acetylcysteine in chronic blepharitis / E. Yalcin [et al.] // Cornea. – 2002. – Vol. 21, № 2. – P. 164-168.
49. The multifaceted therapeutic role of N-acetyl-cysteine (NAC) in disorders characterized by oxidative stress / G. Raghu [et al.] // Curr Neuropharmacol. – 2021. – Vol. 19, № 8. – P. 1202-1224.
50. N-acetylcysteine for antioxidant therapy: Pharmacology and clinical utility / S. Dodd [et al.] // Expert Opin. Biol. Ther. – 2008. – Vol. 8, № 12. – P. 1955-1962.
51. European Medicines Agency (EMA) Fluimicil Mucolytic (N-acetylcysteine): Summary of product characteristics [Electronic resource]: 2017. – Mode of access: – Date of access: 14.02.2019. (accessed 14 February, 2019).
52. Infusion with the antioxidant N-acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle / A.C. Petersen [et al.] // Acta Physiol. – 2012. – Vol. 204. № 3. – P. 382-392.
53. Antioxidant nutraceutical strategies in the prevention of oxidative stress related eye diseases / U. Rodella [et al.] // Nutrients. – 2023. – Vol. 15, № 10. – P. 2283.
Рецензия
Для цитирования:
Зыблева С.В., Рожко Ю.И., Жарикова А.В., Кабешев Б.О., Зыблев С.Л. Роль N-ацетилцистеина в терапии заболеваний, характеризующихся окислительным стрессом (обзор литературы). Медико-биологические проблемы жизнедеятельности. 2023;(2):6-16. https://doi.org/10.58708/2074-2088.2023-2(30)-6-16
For citation:
Zybleva S.V., Rozhko Yu.I., Zharikova A.V., Kabeshev B.O., Zyblev S.L. The role N-acetylcysteine (nac) in the therapy of diseases characterized by oxidative stress (literature review). Medical and Biological Problems of Life Activity. 2023;(2):6-16. (In Russ.) https://doi.org/10.58708/2074-2088.2023-2(30)-6-16