Molecular mechanisms of effects of ionizing radiation action. Irradiation effect on protein (literary review)
https://doi.org/10.58708/2074-2088.2023-1(29)-14-26
Abstract
Target effects (direct and indirect effects of ionizing radiation). When exposed to ionizing radiation, it damages vital intracellular biomolecules which leads to multiple damage to cells and tissues as well as pathophysiological diseases such as inflammation, immunosuppression, etc. Such damage can be caused by direct ionization of biomolecules, but in almost 70% of cases due to indirect radiolysis of intracellular water with the formation of reactive oxygen species and free radicals, which ultimately causes oxidative stress.
Non-target effects (abscopal effect, adaptive response, bystander effect, genomic instability). Over the past 25 years, many studies have explored the molecular mechanisms underlying in nontargeted effects (also known as effects not aimed at DNA). It is shown that these effects are the result of a huge dynamic and complex process induced in irradiated cells, transmitted to neighboring cells and, to some extent, to the whole body through activation of the immune system.
The irradiation effect on protein. Under the direct action of ionizing radiation on a protein, an electron is knocked out of it, resulting in a defective site devoid of an electron, which migrates along the polypeptide chain due to the transfer of electrons until it reaches a site with increased electron-donor properties. At this point, free radicals arise in the side chains of amino acids. Under the indirect effect of ionizing radiation, the formation of free radicals occurs when protein molecules interact with the products of water radiolysis.
About the Authors
N. D. PuzanBelarus
I. A. Cheshik
Belarus
References
1. Masse, R. Rayonnements ionisants / R. Masse // Comptes Rendus de l'Académie des Sciences – Series III – Sciences de la Vie. – 2000. – Vol. 323, №7. – P. 633-640. https://doi.org/10.1016/ s0764-4469(00)00160-8.
2. Богданов, И. М. Проблема оценки эффектов воздействия «малых доз» ионизирующего излучения / И.М. Богданов, М.А. Сорокина, А.И. Маслюк // Бюллетень сибирской медицины. – 2005. – № 2. – С. 145-151.
3. Guéguen, Y. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms / Y. Guéguen, A. Bontemps, T.G. Ebrahimian // Cellular and Molecular Life Sciences. – 2019. – Vol. 76, №7. – P. 1255-1273. https://doi.org/10.1007/ s00018-018-2987-5.
4. Preventative and therapeutic effects of lowdose ionizing radiation on the allergic response of rat basophilic leukemia cells / H.M. Joo [et al.] // Scientific Reports. – 2019. – Vol. 9, №1. – P. 16079. https://doi. org/10.1038/s41598-019-52399-9.
5. Courtade-Saïdi, M. The biological effects of very low-doses of ionizing radiation at the occupational exposure level / M. Courtade-Saïdi // Morphologie. – 2007. – Vol. 91, № 294. – P. 166-172. https://doi. org/10.1016/j.morpho.2007.10.008.
6. Радиационная медицина: учебник / А.Н. Стожаров [и др.]. – Минск: «ИВЦ Минфина», 2010. – 208 с.
7. Основы медицинской радиобиологии / Н.В. Бутомо [и др.]. – С.-Пб.: «Фолиант», 2004. – 384 с.
8. Котеров, А.Н. Разнонаправленное изменение антиоксидантной активности в плазме (сыворотке) крови млекопитающих после воздействия радиации в большой и малой дозе / А.Н. Котеров, Г.И. Сидорович // Радиационная биология. Радиоэкология. – 2009. – Т. 49, № 6. – С. 671-680.
9. Continuous exposure to low-dose-rate gamma irradiation reduces airway inflammation in ovalbumininduced asthma / J. S. Kim [et al.] // PLOS ONE. – 2015. – Vol. 10, №11. – P. e0143403. https://doi. org/10.1371/journal.pone.0143403.
10. Булдаков, Л.А. Позитивные эффекты облучения животных и человека в малых дозах ионизирующего излучения / Л.А. Булдаков, В.С. Калистратова // Медицинская радиология и радиационная безопасность. – 2005. – Т. 50, № 3. – С. 61-71.
11. Голивец, Т.П. Актуальные аспекты радиационного канцерогенеза: проблема оценки эффектов воздействия «малых» доз ионизирующего излучения. Аналитический обзор / Т.П. Голивец, Б.С. Коваленко, Д.В. Волков // Научные ведомости. Серия Медицина. Фармация. – 2012. – № 16 (135), Вып. 19. – С. 5-13.
12. Ушаков, И.Б. Отдаленные последствия при условно малых дозах облучения (обзор литературы) / И.Б. Ушаков, Б.И. Давыдов, С.К. Солдатов // Медицина труда и промышленная экология. – 2000. – № 1. – С. 21-25.
13. Информационный подход к оценке механизмов и последствий действия на живой организм ионизирующих излучений в малых дозах / К.Я. Буланова [и др.] // Вести НАН Беларуси. Серия мед. наук. – 2006. – № 1. – С. 109-122.
14. Ивановский, Ю.А. Радиационный гормезис. Благоприятны ли малые дозы ионизирующей радиации? / Ю.А. Ивановский // Вестник ДВО РАН. – 2006. – № 6. – С. 86-91.
15. Багель, И.М. Влияние малых доз радиации на человека (биологические и медицинские аспекты): пособие / И.М. Багель, Л.М. Мажуль, Г.Г. Гацко. – Минск : БГУФК, 2007. – 60 с.
16. Park, B.S. Foxp3+-Treg cells enhanced by repeated low-dose gamma-irradiation attenuate ovalbumin-induced allergic asthma in mice / B.S. Park, G.U. Hong, J.Y. Ro // Radiation Research. – 2013. – Vol. 179, №5. – P. 570-583. https://doi.org/10.1667/ RR3082.1.
17. Low-dose radiation prevents type 1 diabetesinduced cardiomyopathy via activation of AKT mediated anti-apoptotic and anti-oxidant effects / F. Zhang [et al.] // Journal of Cellular and Molecular Medicine. – 2016. – Vol. 20, №7. – P. 1352-1366. https://doi. org/10.1111/jcmm.12823.
18. Петин, В.Г. Анализ действия малых доз ионизирующего излучения на онкозаболеваемость человека / В.Г. Петин, М.Д. Пронкевич // Радиация и риск. – 2012. – Т. 21, №1. – С. 39-57.
19. Малые дозы ионизирующего излучения как радиомодифицирующий фактор / Г.С. Календо [и др.] // Гигиена и санитария. – 2001. – № 1-3. – С. 14-16.
20. Бурлакова, Е.Б. Действие сверхмалых доз биологически активных веществ и низкоинтенсивных физических факторов / Е.Б. Бурлакова, А.А. Конрадов, Е.Л. Мальцева // Химическая физика. – 2003. – Т. 22, № 2. – С. 21-40.
21. Коваленко, А.Н. Системные радиационные синдромы / А.Н. Коваленко, В.В. Коваленко. – Николаев: Изд-во НГГУ им. Петра Могилы, 2008. – 248 с.
22. Pouget, J.-P. Targeted and off-target (bystander and abscopal) effects of radiation therapy: redox mechanisms and risk-benefit analysis / J.-P . Pouget, A. Georgakilas, J.-L. Ravanat // Antioxidants and Redox Signaling. – 2018. – Vol. 29, №15. – P. 1447- 1487. https://doi.org/10.1089/ars.2017.7267.
23. Bala, A. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines-implication in modification of radiation damage / A. Bala, M. Bala // Redox Biology. – 2014. – Vol. 2. – P. 832-846. https://doi.org/10.1016/j. redox.2014.02.008.
24. A recombinant MnSOD is radioprotective for normal cells and radiosensitizing for tumor cells / A. Borrelli [et al.] // Free Radical Biology and Medicine. – 2009. – Vol. 46, № 1. – P. 110-116. https://doi. org/10.1016/j.freeradbiomed.2008.10.030.
25. Molecular hydrogen as a potential clinically applicable radioprotective agent / S.-I. Hirano [et al.] // International Journal of Molecular Sciences. – 2021. – Vol. 22, №9. – P. 4566. https://doi.org/10.3390/ ijms22094566.
26. Berlett, B.S. Designing antioxidant peptides / B.S. Berlett, R.L. Levine // Redox Report. – 2014. – Vol. 19, №2. – P. 80-86. https://doi.org/10.1179/13510 00213Y.0000000078.
27. Geant4-DNA modeling of water radiolysis beyond the microsecond: an on-lattice stochastic approach / H.N. Tran [et al.] // International Journal of Molecular Sciences. – 2021. – Vol. 22, №11. – P. 6023. https://doi.org/10.3390/ ijms22116023.
28. Ultra-high dose-rate, pulsed (FLASH) radiotherapy with carbon ions: generation of early, transient, highly oxygenated conditions in the tumor environment / A.M. Zakaria [et al.] // Radiation Research. – 2020. – Vol. 194, №6. – P. 587-593. https:// doi.org/10.1667/RADE-19-00015.1.
29. Ultrafast processes occurring in radiolysis of highly concentrated solutions of nucleosides/tides / J. Ma [et al.] // International Journal of Molecular Sciences. – 2019. – Vol. 20, №19. – P. 4963. https://doi. org/10.3390/ijms20194963.
30. Impact of target oxygenation on the chemical track evolution of ion and electron radiation / D. Boscolo [et al.] // International Journal of Molecular Sciences. – 2020. – Vol. 21, №2. – P. 424. https://doi. org/10.3390/ijms21020424.
31. Lai, Y. Modeling the effect of oxygen on the chemical stage of water radiolysis using GPU-based microscopic Monte Carlo simulations, with an application in FLASH radiotherapy / Y. Lai, X. Jia, Y. Chi // Physics in Medicine and Biology. – 2021. – Vol. 66, №2. – P. 025004. https://doi.org/10.1088/1361-6560/ abc93b.
32. A new paradigm in radioadaptive response developing from microbeam research / H. Matsumoto [et al.] // Journal of Radiation Research. – 2009. – Vol. 50. – P. A67- A79. https://doi.org/10.1269/jrr.09003S.
33. Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects / N. Hamada [et al.] // Current Molecular Pharmacology. – 2011. – Vol. 4, №2. – P. 79-95. https://doi.org /10.2174/1874467211104020079.
34. Радиация и патология: учеб. пособие / А.Ф. Цыб [и др.]. – М. : «Высшая школа», 2005. – 341 с.
35. Widel, M. Radiation-induced bystander effect: the important part of ionizing radiation response. Potential clinical implications / M. Widel, W. Przybyszewski, J. Rzeszowska-Wolny // Postepy Hig. Med. Dosw. (Online). – 2009. – Vol. 63. – P. 377-388.
36. Rescue effects in radiobiology: unirradiated bystander cells assist irradiated cells through intercellular signal feedback / S. Chen [et al.] // Mutation Research. – 2011. – Vol. 706, №1-2. – P. 59-64. https:// doi.org/10.1016/j.mrfmmm.2010.10.011.
37. Monte Carlo studies on photon interactions in radiobiological experiments / M.S. Beni [et al.] // PLOS ONE. – 2018. – Vol. 13, №3. – P. e0193575. https://doi. org/10.1371/journal.pone.0193575.
38. Пикаев, А.К. Современная радиационная химия. Радиолиз газов и жидкостей / А.К. Пикаев. – Москва: «Наука», 1986. – 439 с.
Review
For citations:
Puzan N.D., Cheshik I.A. Molecular mechanisms of effects of ionizing radiation action. Irradiation effect on protein (literary review). Medical and Biological Problems of Life Activity. 2023;(1):14-26. (In Russ.) https://doi.org/10.58708/2074-2088.2023-1(29)-14-26