Медико-биологические проблемы жизнедеятельности

№ 3(35) 2025 г.

Научно-практический рецензируемый журнал

Учредитель

Государственное учреждение «Республиканский научнопрактический центр радиационной медицины и экологии человека»

Журнал включен в

Перечень научных изданий Республики Беларусь для опубликования диссертационных исследований по медицинской и биологической отраслям науки (31.12.2009, протокол 25/1)

Журнал зарегистрирован

Министерством информации Республики Беларусь, Свид. № 762 от 6.11.2009

Подписано в печать 19.09.25 Формат 60×90/8. Бумага мелованная. Гарнитура «Times New Roman». Печать цифровая. Тираж 100 экз. Усл. печ. л. 14,0. Уч.-изд. л. 8,05. Зак. 260.

Издатель ГУ «Республиканский научно-практический центр радиационной медицины и экологии человека» Свидетельство N 1/410 от 14.08.2014

Отпечатано в КУП «Редакция газеты «Гомельская праўда» г. Гомель, ул. Полесская, 17а

ISSN 2074-2088

Главный редактор, председатель редакционной коллегии

А.В. Рожко (д.м.н., профессор)

Редакционная коллегия

В.С. Аверин (д.б.н., профессор), В.В. Аничкин (д.м.н., профессор), В.Н. Беляковский (д.м.н., профессор), К.Н. Буздалкин (к.т.н., доцент), Н.Г. Власова (д.б.н., профессор, научный редактор), А.В. Величко (к.м.н., доцент), И.В. Веялкин (к.б.н., доцент), Н.Н. Веялкина (к.б.н., отв. секретарь), А.В. Воропаева (к.б.н., доцент), Д.И. Гавриленко (к.м.н.), М.О. Досина (к.б.н., доцент), А.В. Жарикова (к.м.н.), С.В. Зыблева (д.м.н., доцент), С.А. Игумнов (д.м.н., профессор), А.В. Коротаев (к.м.н., доцент), А.Н. Лызиков (д.м.н., профессор), А.В. Макарчик (к.м.н., доцент), С.Б. Мельнов (д.б.н., профессор), В.М. Мицура (д.м.н., профессор, зам. гл. редактора), Я.Л. Навменова (к.м.н., доцент), И.А. Новикова (д.м.н., профессор), Э.Н. Платошкин (к.м.н., доцент), Э.А. Повелица (к.м.н.), А.С. Подгорная (к.м.н.), Ю.И. Рожко (к.м.н., доцент), И.П. Ромашевская (к.м.н., доцент), А.П. Саливончик (к.б.н.), А.Е. Силин (к.б.н., доцент), А.Н. Стожаров (д.б.н., профессор), И.О. Стома (д.м.н., профессор), Р.М. Тахауов (д.м.н., профессор), Н.И. Шевченко (к.б.н., доцент), Ю.И. Ярец (к.м.н., доцент)

Редакционный совет

А.В. Аклеев (д.м.н., профессор, Челябинск), О.В. Алейникова (д.м.н., чл.-кор. НАН РБ, Минск), С.С. Алексанин (д.м.н., профессор. Санкт-Петербург), $E.\Lambda.$ Богдан Л.А. Бокерия (д.м.н., академик РАН и РАМН, Москва), А.Ю. Бушманов (д.м.н., профессор, Москва), И.И. Дедов (д.м.н., академик РАМН, Москва), В.И. Жарко (Минск), К.В. Котенко (д.м.н., профессор, Москва), В.Ю. Кравцов (д.б.н., профессор, Санкт-Петербург), Н.Г. Кручинский (д.м.н., профессор, Пинск), Т.В. Мохорт (д.м.н., профессор, Минск), В.Ю. Рыбников (д.м.н., профессор, Санкт-Петербург), А.Л. Усс (д.м.н., профессор, Минск), В.А. Филонюк (д.м.н., профессор, Минск), Р.А. Часнойть (к.э.н., Минск), В.Д. Шило (Минск)

Технический редактор С.Н. Никонович Корректор Н.Н. Юрченко

Адрес редакции 246040 г. Гомель, ул. Ильича, д. 290, ГУ «РНПЦ РМ и ЭЧ», редакция журнала тел (0232) 38-95-00, факс (0232) 37-80-97 http://www.mbp.rcrm.by e-mail: mbp@rcrm.by

© Государственное учреждение «Республиканский научно-практический центр радиационной медицины и экологии человека», 2025 № **3(35) 2025**

Medical and Biological Problems of Life Activity

Scientific and Practical Journal

Founder

Republican Research Centre for Radiation Medicine and Human Ecology

Journal registration by the Ministry of information of Republic of Belarus

Certificate № 762 of 6.11.2009

© Republican Research Centre for Radiation Medicine and Human Ecology

ISSN 2074-2088

Содержание Content

Медико-биологические проб<mark>лемы</mark>

Medical-biological problems

И.В. Веялкин, С.Л. Ачинович, И.Л. Кравцова, И.В. Ковалев, Е.А. Никиташина, А.А. Россол, Э.А. Надыров

Разработка и валидация номограммы, прогнозирующей неблагоприятный исход рака прямой кишки у пациентов на I–III сталии заболевания

Н.Г. Власова, К.Н. Буздалкин, Е.К. Нилова Прогноз доз облучения работников при возврате земель в использование

М.В. Линков, И.В. Веялкин, Ж.М. Козич, Е.С. Евсейчик, Н.Н. Усова

Эпидемиологическая сводка по множественной миеломе в Гомельской области и Республике Беларусь за последние 15 лет

Е.Г. Фомина, Е.Е. Григорьева, В.В. Зверко, А.Д. Коржеева

Сравнительный анализ экспрессии ключевых белков для инфицирования коронавирусом клеточных культур различного происхождения

Е.Г. Юркина, С.И. Кривенко, Е.А. Примакова, Е.А. Назарова, А.А. Сыманович, Н.И. Дедюля, И.А. Романова, Е.А. Янушевская, В.В. Смольникова, Д.Ю. Ефимов

Сравнительный анализ продукции растворимых факторов мезенхимальными стволовыми клетками плацентарнопуповинного комплекса, жировой ткани и костного мозга

M. Ghaith, A.G. Sysa, E.P. Zhyvitskaya

Phenobarbital-induced CD4+ upregulation predicts seizure reduction in epilepsy I.V. Veyalkin, S.L. Achinovich, I.L. Kravtsova, I.U. Kavaleu, L.A. Nikitashina, A.A. Rasol, E.A. Nadyrov

Development and validation of a nomogram predicting unfavorable outcomes in patients with stage I–III rectal cancer

N.G. Vlasova, C.N. Bouzdalkin, E.K. Nilova Forecast of radiation doses to workers during the return of land to use

M.V. Linkou, I.V. Veyalkin, Zh.M. Kozich, K.S. Yauseichyk, N.N. Usova

Epidemiological summary of multiple myeloma in the Gomel region and the Republic of Belarus over the past 15 years

E.G. Fomina, E.E. Grigorieva, V.V. Zverko, A.D. Korzheeva

A comparative analysis of the expression of key proteins involved in the entry of coronavirus into different types of cell cultures

E.G. Yurkina, S.I. Krivenko, E.A. Primakova, E.A. Nazarova, A.A. Symanovich, N.I. Dedyulya, I.A. Romanova, E.A. Yanushevskaya, V.V. Smolnikova, D.Yu. Efimov

Comparative analysis of the production of soluble factors by mesenchymal stem cells of the placenta-umbilical cord complex, adipose tissue and bone marrow

М. Гаит, А.Г. Сыса, Е.П. Живицкая

Фенобарбитал-индуцированное повышение уровня CD4+-лимфоцитов предсказывает снижение частоты приступов при эпилепсии

6

13

19

27

34

42

Содержание Content

49

55

63

75

TC		
Клиническая	меоииина	

Т.В. Бобр, О.М. Предко, И.И. Бутько

Клинический случай интраретинальной гематомы при буллезном ретиношизисе

А.В. Доманцевич

Взаимосвязь стадии множественной миеломы, типа остеодеструктивного поражения и костной плазмоцитомы: взгляд лучевого диагноста

М.В. Белевцев, С.О. Шарапова, И.Е. Гурьянова, Ю.С. Жаранкова, Е.А. Полякова, С.Н. Алешкевич, И.С. Сакович, А.Н. Купчинская, Т.П. Володащик, Е.Я. Скоповец, В.Р. Вертелко, П.Ю. Бобрик, М.Г. Шитикова, Д.А. Цеханович, Л.В. Жерко, Т.А. Углова, А.В. Солнцева, А.П. Саливончик, С.В. Зыблева, О.М. Хурс, О.В. Прибушеня

Регистр первичных иммунодефицитов в Республике Беларусь: 20-летний опыт

О.В. Пархоменко, Э.А. Повелица, А.С. Князюк, В.А. Доманцевич, А.М. Шестерня

К вопросу реваскуляризации полового члена и операции Virag

А.С. Подгорная, А.Ю. Захарко, О.В. Мурашко, В.Н. Калачев

Синдром внутрисосудистой абсорбции как осложнение оперативной гистероскопии 81

А.В. Рожко, В.А. Рожко, И.Г. Савастеева

Риски клинической манифестации сахарного диабета 2 типа у населения трудоспособного возраста

И.П. Ромашевская, С.А. Ходулева, А.Н. Демиденко, Е.Ф. Мицура, Е.В. Борисова

Гематологические проявления парвовирусной В19 инфекции у детей

Clinical medicine

T. Bobr, O. Predko, I. Butko

A clinical case of intraretinal hematoma in bullous retinoschisis

A. V. Domantsevich

The relationship between multiple myeloma stage, type of osteodestructive lesion, and bone plasmacytoma: a radiologist's perspective

M. Belevtsev, S. Sharapova, I. Guryanova, Yu. Zharankova, E. Polyakova, S. Aleshkevich, I. Sakovich, A. Kupchinskaya, T. Volodashchik, E. Skopovets, V. Vertelko, P. Bobrik, M. Shitikova, D. Tsehanovich, L. Zherko, T. Uglova, A. Solntseva, A. Salivonchik, S. Zybleva, O. Hurs, O. Pribushenya

Registry of primary immunodeficiencies in the Republic of Belarus: 20-year experience

O.V. Parhomenko, E.A. Povelitsa, A.S. Kniaziuk, A.V. Domantsevich, A.M. Shesternja

On the Issue of Penile Revascularization and the VIRAG Operation

A.S. Podgornaya, A.Yu. Zaharko, O.V. Murashko, V.N. Kalachev

Intravascular absorption syndrome as a complication of surgical hysteroscopy

A.V. Rozhko, V.A. Rozhko, I.G. Savasteeva

Risks of clinical manifestation of diabetes mellitus type 2 in the working-age population

I. Romashevskaya, S. Khoduleva, A. Demidenko, E. Mitsura, E. Borisova

Hematological manifestations of parvovirus B19 infection in children

96

89

Содержание Content

101

Обмен опытом

има ИИ Гарриламиа ИИ Иар

Е.В. Родина, Д.И. Гавриленко, Н.И. Корженевская, О.А. Романива, А.П. Саливончик, Е.С. Тихонова, Л.А. Ткаченко

Место спекл-трекинг эхокардиографии в современной диагностике ишемической болезни сердца: разбор клинического случая

Tian-Qi He, Xu-Liang Xia, Zhi-Qiang Jiang

The Evolution of Thyroid Surgery in China: From Open Approach to Endoscopic Minimally Invasive Techniques

Experience exchange

A. Rodzina, D. Haurylenka, N. Karzhaneuskaya, A. Romaniya, A. Salivontchik, K. Tsikhanaya, L. Tkachenka

The place of speckle tracking echocardiography in modern diagnostics of ischemic heart disease: analysis of a clinical case

Тяньци Хэ, Сюйлян Ся, Чжицян Цзян

Эволюция хирургии щитовидной железы в Китае: от открытого доступа к эндоскопическим малоинвазивным методам

УДК: 618.14-072.1-008.6-089.81 А.С. Подгорная¹, А.Ю. Захарко¹, DOI: 10.58708/2074-2088.2025-3(35)-81-88 О.В. Мурашко¹, В.Н. Калачев²

СИНДРОМ ВНУТРИСОСУДИСТОЙ АБСОРБЦИИ КАК ОСЛОЖНЕНИЕ ОПЕРАТИВНОЙ ГИСТЕРОСКОПИИ

¹ГУ «РНПЦ радиационной медицины и экологии человека», г. Гомель, Беларусь; ²УО «Гомельский государственный медицинский университет», г. Гомель, Беларусь

Статья посвящена наиболее грозному осложнению гистерорезектоскопии — синдрому внутрисосудистой абсорбции. Проведён анализ литературных данных с определением причин возникновения синдрома, клинических проявлений, диагностических аспектов и лечебной тактики. Частота встречаемости синдрома составляет 0,2 процента. Ведущим патогенетическим механизмом являются электролитные нарушения. Клинические проявления характеризуются нарастанием неврологической симптоматики, которая зависит от уровня натрия в крови и может привести к отёку лёгких, отёку головного мозга с возможным летальным исходом. Основным принципом лечения является коррекция электролитных нарушений, а именно натрия. При развитии острого повреждения почек — своевременное лечение с использованием гемодиализа, а в случае сердечной недостаточности — экстракорпоральной мембранной оксигенации. Лечение проводится в условиях отделения интенсивной терапии с участием мультидисциплинарной бригады.

Ключевые слова: монополярная и биполярная гистерорезектоскопия, синдром внутрисосудистой абсорбции, осложнения гистероскопии, интравазация жидких расширяющих сред, электролитные нарушения

Введение

История гистероскопии занимает более чем 200-летний период и является неотъемлемым атрибутом мониторинга внутриматочных вмешательств. Однако время, когда гистероскопии отводилась только «контролирующая» роль (так называемая диагностическая гистероскопия), безвозвратно прошло. Современная гистероскопия — самостоятельный метод хирургии в гинекологии, возможности которого предусматривают широкий спектр операций, объединённых в понятие «внутриматочная хирургия». Развитие последней тесным образом связано с прогрессированием электрохирургической технологии внутриполостной деструкции патологических образований — гистерорезектоскопии, которая является альтернативой абдоминальным операциям при таких нозологиях, как подслизистая миома матки, сложная гиперплазия эндометрия, внутриматочная перегородка, шеечная беременность, врастание плаценты, внутриматочные сращения и др.

Появление в арсенале врачей-гинекологов гистерорезектоскопии позволило коренным образом пересмотреть традиционные каноны терапии перечисленных выше заболеваний. Согласно данным многочисленных исследований, с внедрением в клиническую практику гистерорезектоскопии частота радикальных операций по поводу рецидивирующих маточных кровотечений уменьшилась в среднем на 30–40% [1]. В то же время освоение нового направления хирургии повлекло за собой развитие специфических осложнений, присущих данному виду операций (таблица 1) [2].

Одним из самых грозных осложнений в ряду вышеперечисленных является синдром внутрисосудистой абсорбции. При выборе среды для растяжения следует учитывать ряд факторов, включая объём операции, которую предстоит выполнить, и инструменты, которые будут использо-

Таблица 1 — Осложнения гистероскопии		
Осложнение	Частота	Факторы риска
Попфоролица	Слепое вхождение инструмента, стенозы и стриктуры шейки	
Перфорация матки	0,12-1,01%	матки, анатомические аномалии, деформации миомами матки,
матки		синехии, чрезмерное отклонение матки кпереди или кзади
Газовая эмболия $0,03-0,09\%$	Повторное введение инструмента через шейку матки, неадекватная	
	подача воздуха к инструменту	
Синдром		Чрезмерная абсорбция дилятирующей жидкости, большая по
внутрисосу-	0.200/	площади или глубокая резекция, высокое внутриматочное давление,
дистой	0,20%	повышенный риск гипонатриемии с использованием неэлектролитных
абсорбции		сред, приводящей к отёку лёгкого и головного мозга
V-попотоновние	0.03 0.619/	Разрыв шейки матки, перфорация матки, адгезиолизис, резекция
Кровотечение	Кровотечение 0,03-0,61%	- 5

ваться. Традиционные электрохирургические устройства имеют **монополярную** конструкцию и могут использоваться только с безэлектролитными ирригационными жидкостями и **биполярные** электрохирургические устройства, требующие электролитных растворов (таблица 2) [3].

0,21-1,85%

Сосудистая

реакция

Все типы ирригационных сред потенциально могут вызывать осложнения, когда происходит быстрая системная абсорбция жидкости, приводящая к отёку лёгких и сердечной недостаточности. Однако клинически значимые нарушения более вероятны при использовании гипотонических и безэлектролитных расширяющих сред, поскольку они создают осмотический дисбаланс между внеклеточной и внутриклеточной жидкостью [4].

Монополярная конфигурация оборудования. При монополярной конфигурации электрооборудования тело пациента включе-

Таблица 2 — Ирригационные жидкости, используемые для гистерорезектоскопии

Характеристика	Наименование
Электролиты	Раствор хлорида натрия (0,9%) Раствор Рингера
Диэлектрики (растворы) с низкой вязкостью	Глицин (1,5%) Глюкоза (5%) Маннитол (5%) Сорбитол (3%) Цитал (3,2%)
Диэлектрики (растворы) с высокой вязкостью	Гискон (декстран-70)

но в качестве проводника в электрическую цепь. При работе в жидкой окружающей среде последняя должна обладать свойствами диэлектрика для того, чтобы обеспечить изоляцию активного электрода от случайного соприкосновения с тканями в полости матки. При касании ткани и активации генератора электрическая энергия, поступающая на активный электрод, в зависимости от характеристик электрической волны будет осуществлять резание, коагуляцию или смешанное воздействие. Без соприкосновения с тканью электрический эффект на ткани не разовьётся в силу диэлектрических свойств сред.

образований в полости матки Триггер парасимпатической нервной системы во время

манипулирования с шейкой матки

Жидкостные среды для расширения полости матки при монополярной конфигурации представлены следующими растворами: 5% глюкоза, 1,5% глицин, 3% сорбитол, 5% маннитол. Данные растворы подвергаются метаболическому распаду в организме и в силу гипоосмоляльной природы для данного типа сред характерны специфические осложнения:

- гемодинамические связанные с проникновением жидкостной среды в сосудистое русло и развитием синдрома перегрузки жидкостью;
- гипоосмоляльная природа большинства растворов приводит к эффекту дополнительного привлечения жидкости в интерстициальное пространство и развитию гиперволемии, гипонатриемии, гипоосмолярности, отёка головного мозга и, в отдельных случаях, смерти [4].

Два исследования (MISTLETOE (Overtone et al, 1997) и Шотландская группа по аудиту гистероскопии (1995)), изучавшие распространённость осложнений, связанных с гистероскопией, обнаружили возникновение интравазации более 1 литра в 5% случаев, кардиореспираторные осложнения — в 0,5% случая, висцеральные ожоги — в 0,06% [5]. Отёк головного мозга развивался у 100% пациенток с дефицитом (интравазацией) более 1 литра 1,5% глицина.

Биполярная энергия. Электрохирургические генераторы высокой частоты, созданные в последнее время, «превратили» монополярные инструменты в режущие биполярные, которые не требуют наличия дисперсного электрода на теле пациентки. В биполярной гистерорезектоскопии ток проходит через ткани только между электродами петли, которая находится в поле зрения хирурга [5]. В среде электролита жидкость, проводя электрический ток между электродами, разогревается до температуры 40-70°С и образует ионизированные пузырьки газа — плазму [6]. «Плазма» при касании ткани бережно повреждает её на меньшую по сравнению с монополярной конфигурацией глубину. Плазма-эффект, а также возможность уменьшения силы тока до минимально необходимой, обеспечивают качественное резание и коагуляцию [7]. В биполярной технологии минимизированы несовершенство изоляции и возможная утечка электрического тока, вследствие этого снижен риск термального повреждения отдаленных органов и тканей через прямой контакт с инструментом [8]. Также снижен риск влияния на работу других устройств, находящихся на теле или внутри него [9]. При биполярной конфигурации оборудования в качестве электролита используется 0,9% раствор NaCl, раствор Рингера, раствор Гартмана. Эти растворы являются изоосмолярными, поэтому попадание их в сосудистое русло в избыточном количестве вызывает развитие простого гиперволемического состояния, которое характеризуется перегрузкой правых отделов сердца. При интравазации более 2,0 л может произойти отёк лёгких, генерализованный отёк (анасарка), воздушная (газовая) эмболия [10].

Синдром внутрисосудистой абсорбции. Всасывание жидкости в сосудистое пространство (интравазация) — центральный и основной механизм перегрузки жидкостью и гипонатриемии, которые являются опасными для жизни осложнениями. Избыточное всасывание гипоосмолярных растворов связано с гипонатриемией, тогда как использование изотонического физиологического раствора связано с перегрузкой жидкостью [11]. Основной движущей силой интравазации является давление растягивающей среды.

Гипонатриемия и перегрузка жидкостью считаются опасными, но редкими осложнениями гистероскопии. Согласно многоцентровому исследованию, включающему анализ более 21 000 оперативных гистероскопических процедур, перегрузки жидкостью и гипонатриемии составила 0,06% [12]. Объём поглощённой среды, который измеряется дефицитом объёма, является наиболее значимым фактором риска развития гипонатриемии и имеет прямую связь со степенью гипонатриемии [13]. Причём чрезмерная абсорбция при гистерорезектоскопии может произойти в течение семи — двенадцати минут [14, 21].

В таблице 3 приведена частота встречаемости дефицита более 1 л при различных видах внутриматочной хирургии.

Факторы, влияющие на всасывание жидкости:

1. Внутриматочное давление — чем выше давление, тем больше степень всасывания в организм; системное всасывание жидкости значительно увеличивается, когда внутриматочное давление превышает среднее артериальное давление. Необходимо помнить, что давление в маточных венах значительно ниже артериального и составляет 8–15 мм рт. ст. Соответственно абсорбция в маточные вены может быть значительной при низких цифрах внутриматочного давления. Кроме того, внутриматочное давление >75 мм рт. ст. увели-

Таблица 3 — Частота чрезмерной абсорбции при различных видах внутриматочной хирургии*

Вид внутриматочного вмешательства	Частота (%)
Общая частота чрезмерной	0,46%
абсорбции	(49/10693)
Трансцервикальная резекция миомы	2,57% (16/623)
Удаления остатков плодного яйца	2,36% (9/381)
Гистероскопическая резекция маточной перегородки	1,20% (6/501)
Трансцервикальная резекция эндометрия	0,48% (4/828)
Трансцервикальная резекция спаек	0,53% (14/2621)

* — Дефицит жидкости более 1 л был определён как диагностический критерий чрезмерной абсорбции

чивает объём среды, проходящей по фаллопиевым трубам в брюшинную полость. При этом обеспечить адекватную визуализацию можно при внутриматочном давлении более 100 мм рт. ст.

- 2. Глубина проникновения в миометрий когда повреждение тканей распространяется на более глубокий миометрий; введённая жидкость может быстро всасываться через открытые венозные синусы миометрия. Риск всасывания жидкости ещё выше во время миомэктомий, когда нарушаются крупные кровеносные сосуды, что облегчает всасывание жидкости под давлением.
- 3. Продолжительность операции чем дольше процедура, тем больше времени требуется для накопления жидкости в организме.
- 4. Размер полости матки чем больше полость матки, тем больше площадь поверхности эндометрия для абсорбции жидкости и, как правило, дольше длительность процедуры. Однако, несмотря на необходимость большего количества введённой жидкости, труднее достичь высокого внутриматочного давления для обеспечения адекватной визуализации [15].

Проблемы учёта ирригационной жидкости. Поскольку самым важным в развитии осложнений является уровень дефицита жидкости, т.е. разница между ко-

личеством использованного и выведённого раствора, то необходим её строгий учёт.

Не существует проблем при учёте жидкости в закрытой системе, когда её подача и забор осуществляются по каналу притока и каналу оттока. Однако систему при проведении гистероскопии нельзя считать закрытой, поскольку происходит потеря жидкости следующими путями:

- излитие раствора через ирригационный канал тубуса резектоскопа (с помощью стопорного крана ирригационного канала регулируют внутриматочное давление, а также отток жидкости, смешанной с кровью, обеспечивая тем самым чёткое изображение в окуляре телескопа);
- заброс жидкости в брюшную полость через проходимые маточные трубы;
- интравазация раствора;
- отток жидкости через пространство между тубусом резектоскопа и шеечным каналом;
- излитие раствора через цервикальный канал при извлечении резецированных тканей [16].

Точно оценить истинный объём интравазации весьма проблематично. Так, объём жидкости, эвакуированный через тубус резектоскопа в ёмкость, и жидкость, излившаяся через канал и собранная в ёмкость, могут быть измерены довольно точно, в то время как объём раствора, поступившего в брюшную полость, абсорбированного бельём или излившегося на пол, может быть оценён с определённой погрешностью.

Какой объём ирригационной жидкости, используемой при гистероскопии, можно считать безопасным? Ming-Tse Wang et al. определили, что в группе пациенток с синдромом внутрисосудистой абсорбции объём используемого изотонического раствора составил 4250 мл, гипотонического раствора — 2400 мл [17].

Клиника. Синдром внутрисосудистой абсорбции может проявляться множеством признаков и симптомов: тошнота, рвота, головная боль, слабость, отёк лёгких, острый респираторный дистресс-синдром,

отёк гортани, отёк мозга. Было обнаружено, что женщины в пременопаузе, у которых развилась послеоперационная гипонатриемическая энцефалопатия, в 25 раз чаще умирали или имели постоянные неврологические осложнения по сравнению с мужчинами и женщинами в постменопаузе с гипонатриемической энцефалопатией. Это объясняется различиями во влиянии половых гормонов на функцию натриевого насоса в центральной нервной системе [18]. Pramod A et al. описали случай, в котором кроме электролитных нарушений при использовании в качестве дилятирующей среды глицина 1,5% наблюдалась острая транзиторная потеря зрения. При этом дефицит составлял 6 литров глицина. Зрение восстановилось лишь через 20 часов [19].

В таблице 4 представлены клинические проявления в зависимости от уровня натрия в сыворотке крови [20].

Лечение. Лечение синдрома внутрисосудистой абсорбции зависит от симптомов и их тяжести. Если использовались изотонические растворы, то у пациента будут симптомы, соответствующие объёмной перегрузке, и лечение будет сосредоточено на оптимизации респираторного статуса с помощью дополнительной кислородной поддержки, неинвазивной вентиляции и коррекции гиперволемии петлевыми диуретиками. Если средой для растяжения матки был гипотонический раствор без электролитов, то у пациентов будут наблюдаться нарушения электролитного баланса в дополнение к гиперволемии. Поскольку гипонатриемия является наиболее распространённой наблюдаемой аномалией элек-

Таблица 4 — Клинические проявления синдрома внутрисосудистой абсорбции в зависимости от уровня натриемии

	Уровень натрия	
Симптомы гипонатриемии	в сыворотке	
	ммоль/л	
Тревога, дезориентация,		
раздражительность,	130–135	
подёргивание, всхлипывания		
Отёк лёгких, полиурия	123–130	
Гипотония, брадикардия,	120–125	
цианоз, изменения психики	120-123	
Энцефалопатия, застойная		
сердечная недостаточность,	<120	
летаргия, спутанность		
сознания, судороги		
Отёк ствола мозга, остановка	<115	
дыхания, кома	\11 <i>3</i>	

тролитного баланса, врачи должны сохранять высокую степень настороженности, если у пациента после оперативной гистероскопии проявляются неврологические симптомы. Лечение (алгоритм действий) предполагаемой гиперволемической гипонатриемии, возникающей вследствие перегрузки жидкостью более 1000 мл, представлен в таблице 5 [20].

Симптоматическую и/или тяжёлую острую гипонатриемию (сывороточный натрий <120 ммоль/л) купируют путём введения 3% гипертонического раствора в виде болюса объёмом 100 мл, вводимого в течение 10 минут. Это можно повторить до трёх раз по мере необходимости, чтобы повысить уровень натрия в сыворотке на 4–6 ммоль/л для предотвращения отёка мозга. Пациентов с менее тяжёлыми проявлениями можно лечить медленной инфузией 3% гипертонического солевого рас-

Таблица 5 — Алгоритм действий при гипонатриемии

Бессимптомная гипонатриемия и [Na +] ≥120	Симптоматическая гипонатриемия и/или [Na +]
ммоль/л	<120 ммоль/л
Гемостаз	Гипертонический (3%) солевой раствор (1 л =
Прекращение операции	513 ммоль/л NaCl по сравнению с обычным
Прекращение инфузии	физиологическим раствором, где 1 $\pi = 154$ ммоль/ π),
Ограничение жидкости (менее 1 л в день) и	Уровень № повышать не быстрее 2 ммоль \л\ч
петлевые диуретики (40-80 мг фуросемида)	Дополнительный кислород
	Постоянный мочевой катетер
	Тщательное мониторирование витальных функций и
	участие многопрофильной команды

твора (0,5-2 мл/кг/час). Также рекомендуется мониторинг электролитов сыворотки крови каждые два — четыре часа.

После возникновения гипонатриемии важно определить скорость коррекции. Резкая чрезмерная коррекция уровня натрия в сыворотке увеличивает риск осмотического демиелинизирующего синдрома (ODS). Напротив, опасный для жизни отёк мозга может возникнуть, если уровень натрия в сыворотке не поднимется до целевого диапазона в течение определённого временного периода [18].

При развитии острого анурического повреждения почек должен быть применён метод гемодиализа для удаления накопившейся жидкости.

При развитии острого респираторного дистресс-синдрома с тяжёлой гиперкапнией, гипоксемией и сердечной недостаточностью целесообразна венозно-артериальная ЭКМО.

Yoo S.W. и др. привели случай коррекции гипонатриемии после гистерорезектоскопии у пациентки с развившимся отёком лёгкого. Учитывая содержание натрия 82 ммоль/л, авторы использовали двухэтапную схему лечения. Первоначальной целью была быстрая коррекция гипонатриемии до 120 ммоль/л; затем корректировка должна была постепенно продолжаться до <8 ммоль/день. Тем самым авторы снизили вероятность отёка мозга, поставив цель достичь уровня натрия 120 ммоль/л в течение первых 24 часов, а затем минимизировали вероятность ODS, выполнив последующую постепенную коррекцию. При исходном содержании натрия 82 ммоль/л вводился 3% NaCl, начиная со 100 мл/ч. Уровни натрия в сыворотке примерно через 1 и 3 ч составили 92 и 102 ммоль/л соответственно. Скорость введения была снижена до 50 мл/ч, а уровень натрия в сыворотке проверялся каждые 2 ч и доводился до 10-50 мл/ч. Примерно через 12 ч после коррекции уровни натрия в сыворотке составили 118 ммоль/л, а 3% NaCl заменили на 0,9% NaCl. Отёк лёгких, наблюдаемый при рентгенографии грудной клетки

уменьшился, а уровни лактата нормализовались с 8,7 до 1,8 ммоль/л [21].

У пациентов с гипонатриемией менее 24 часов крайне маловероятно развитие ODS. Отёк мозга, наиболее опасное осложнение гипонатриемии, возникает почти исключительно у пациентов с острой гипонатриемией.

Имеются данные, что временное прекращение операции в виде 10-минутного интервала может снизить скорость интравазации жидкости на 38,8–85,8% (в среднем — 67,1%) в связи с гемостатической герметизацией открытых кровеносных сосудов [22].

В обзоре Atieh A.S. приведены варианты лечения синдрома внутрисосудистой абсорбции врачами различных клиник [3].

Согласно протоколу МЗ РБ «Интенсивная терапия критических для жизни состояний (взрослое население)» 13 июня 2023 г. №100 лечение гипонатриемии включает следующие этапы:

1. Расчёт дефицита натрия (ммоль), который осуществляется по следующей формуле:

дефицит натрия = масса тела (кг) \times калий \times (натрий целевой — натрий плазмы),

где калий = 0.6 для мужчин и = 0.5 — для женщин.

При коррекции сопутствующей гипокалиемии из полученного результата дефицита натрия вычитается количество вводимых ммолей калия.

2. Обязательными диагностическими исследованиями при гипонатриемии являются: анализ кислотно-основного состояния крови; общий анализ крови (определение уровня гемоглобина, количества эритроцитов и лейкоцитов, подсчёт лейкоцитарной формулы, уровня тромбоцитов, скорость оседания эритроцитов); биохимический анализ крови (определение уровня креатинина, мочевины, калия, натрия, хлора, магния, фосфора, глюкозы, общего белка, АЛТ, АСТ, общего и прямого билирубина, С-реактивного белка); общий анализ мочи; определение осмолярности крови и мочи, уровня натрия в моче.

3. При гипонатриемии выполняются: введение внутривенно болюсно раствора натрия хлорида (раствор для инфузий (для инъекций) 9 мг/мл) в дозе 2 мл/кг массы тела в течение 20 минут. Скорость роста натрия плазмы не должна превышать 10 ммоль/л в первые сутки и 8 ммоль/л в каждые последующие сутки до достижения 130 ммоль/л; контроль уровня натрия в плазме; повтор болюса дважды или до увеличения натрия плазмы на 5 ммоль/л; отмена гипертонического раствора при регрессе симптомов; повышение натрия плазмы на 1 ммоль/л в час при помощи раствора натрия хлорида 30 мг/мл при отсутствии регресса симптомов после увеличения натрия плазмы на 5 ммоль/л [23].

Выводы

- 1. У здоровых пациентов максимальный дефицит жидкости не должен превышать 1000 мл для гипотонических растворов, 2500 мл для изотонических растворов и 500 мл для высоковязких растворов.
- 2. Если дефицит жидкости достигает 750 мл гипотонического раствора, 2000 мл раствора электролитов или 300 мл высоковязкого раствора, следует рассмотреть возможность прекращения процедуры, оценить гемодинамический, неврологический, респираторный и сердечно-сосудистый статус пациента, признаки и симптомы перегрузки жидкостью, провести измерение электролитов и осмолярности сыворотки, рассмотреть возможность назначения диуретиков (фуросемида) и начать дальнейшее диагностическое и терапевтическое вмешательство по показаниям.
- 3. Для пожилых пациентов, пациентов с сопутствующими заболеваниями, с сердечно-сосудистой или почечной недостаточностью должны быть более низкие пороговые значения дефицита жидкости.
- 4. Бессимптомную гиперволемию с гипонатриемией или без неё следует лечить ограничением жидкости с диуретиками или без них.
- 5. Симптоматическая гипонатриемия и перегрузка жидкостью требует перевода в

отделение интенсивной терапии и многопрофильного участия.

Библиографический список

- 1. Давыдов, А.И. Оперативная гистероскопия / А.И. Давыдов, А.Н. Стрижаков. Москва: Династия, 2015. 196 с.
- 2. Munro, M. G. AAGL Practice Report: Practice Guidelines for the Management of Hysteroscopic Distending Media: (Replaces Hysteroscopic Fluid Monitoring Guidelines) / M.G. Munro, K. Storz, J.A. Abbott [et al.] // Journal of Minimally Invasive Gynecology. − 2013. Vol. 20, №2. P. 137–148.
- 3. Atieh, A.S. Acute severe hyponatremia following hysteroscopic procedure in a young patient: a case report and review of the literature / A.S. Atieh, O.K. Abu Shamma, M.O. Abdelhafez [et al.] // Case Reports in Nephrology. 2021. Article ID 7195660. DOI: 10.1155/2021/7195660.
- 4. Ключаров, И.В. Электрическая энергия при гистероскопии / И.В. Ключаров, В.В. Морозов // Практическая медицина. -2017. № 7 (108). C. 47–50.
- 5. Overton, C. A national survey of the complications of endometrial destruction for menstrual disorders: the MISTLETOE study / C. Overton, J. Hargreaves, M. Maresh // British Journal of Obstetrics and Gynaecology. − 1997. − Vol. 104, №12. − P. 1351–1359.
- 6. Wendt-Nordahl, G. The Vista system: a new bipolar resection device for endourological procedures: comparison with conventional resectoscope / G. Wendt-Nordahl, A. Häcker, O. Reich [et al.]// European Urology. − 2004. − Vol. 46, №5. − P. 586–590.
- 7. Golan, A. Bipolar electrical energy in physiologic solution a revolution in operative hysteroscopy / A. Golan, R. Sagiv, M. Berar [et al.] // The Journal of the American Association of Gynecologic Laparoscopists. 2001. Vol. 8, №2. P. 252–258.
- 8. Riedel, H.H. There is no place in gynecological endoscopy for unipolar of bipolar high-frequency current / H.H. Riedel, K. Semm // Endoscopy. 1982. Vol. 14, №2. P. 51–54.
- 9. Levy, B.S. Bowel injuries during laparoscopy. Gross anatomy and histology / B.S. Levy, R.M. Soderstrom, D.H. Dail // The Journal of Reproductive Medicine. 1985. Vol. 30, №3. P. 168–172.
- 10. Odell, R. C. Electrosurgery: principles and safety issues / R. C. Odell // Clinical Obstetrics and Gynecology. 1995. Vol. 38, № 3. P. 610–621.
- 11. Berg, A.A randomized trial comparing monopolar electrodes using glycine 1.5% with two different types of bipolar electrodes (TCRis, Versapoint) using saline, in hysteroscopic surgery / A. Berg, L. Sandvik, A. Langebrekke, O. Istre // Fertility and Sterility. 2009. Vol. 91, №4. P. 1273–1278.
- 12. Aydeniz, B. A multicenter survey of complications associated with 21,676 operative hysteroscopies / B. Aydeniz, I.V. Gruber, B. Schauf [et al.] // European

- Journal of Obstetrics, Gynecology, and Reproductive Biology. 2002. Vol. 104, №2. P. 160–164.
- 13. Istre, O. Changes in serum electrolytes after transcervical resection of endometrium and submucous fibroids with use of glycine 1.5% for uterine irrigation / O. Istre, K. Skajaa, A. P. Schjoensby, A. Forman // Obstetrics and Gynecology. − 1992. − Vol. 80, №2. − P. 218–222.
- 14. The Use of Hysteroscopy for the Diagnosis and Treatment of Intrauterine Pathology / ACOG.org. 2020. URL: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2020/03/the-use-of-hysteroscopy-for-the-diagnosis-and-treatment-of-intrauterine-pathology (дата обращения: 18.07.2025).
- 15. Давыдов, А.И. Осложнения оперативной гистероскопии: профилактика и лечение / А.И. Давыдов, А.Н. Стрижаков, Н.Х. Новрузова // Вопросы гинекологии, акушерства и перинатологии. 2016. Т. 15, №6. С. 52–60.
- 16. Wang, M.-T. Operative hysteroscopy intravascular absorption syndrome is more than just the gynecological transurethral resection of the prostate syndrome: a case series and literature review / M.-T. Wang, C.-C. Chang, M.-H. Hsieh [et al.] // Taiwanese Journal of Obstetrics and Gynecology. 2020. Vol. 59, №5. P. 748–753.
- 17. Elegante, M.F. Operative hysteroscopy intravascular absorption syndrome causing hyponatremia with associated cerebral and pulmonary edema / M.F. Elegante, J.A. Hamera, J. Xiao, D.A. Berger // Clinical Practice and Cases in Emergency Medicine. − 2019. Vol. 3, №3. P. 252–255.

- 18. Pramod, A. Glycine induced acute transient postoperative visual loss / A. Pramod, S. Rajagopal, V.P. Iyer, H.S. Murthy // Indian Journal of Anaesthesia. 2015. Vol. 59, №5. P. 318–319.
- 19. Advanced Hysteroscopy Module [Электронный ресурс] / ACOG.org. 2021. URL: https://www.acog.org/education-and-events/simulations/scog002/module (дата обращения: 18.07.2025).
- 20. Rapid correction of severe hyponatremia and control of subsequent overcorrection in operative hysteroscopy intravascular absorption syndrome: a case report / S.W. Yoo, M.J. Ki, Y.J. Oh [et al.] // Medicine (Baltimore). 2022. Vol. 101, №44. Article e31351.
- 21. Kumar, A. A simple technique to reduce fluid intravasation during endometrial resection / A. Kumar, A. Kumar // The Journal of the American Association of Gynecologic Laparoscopists. -2004. Vol. 11, N01. P. 83–85.
- 22. Постановление Министерства здравоохранения Республики Беларусь 13 июня 2023 г. № 100 Об утверждении клинического протокола «Интенсивная терапия критических для жизни состояний (взрослое население)» // Национальный правовой Интернет-портал Республики Беларусь. URL: https://pravo.by/document/?guid=12551&p0=W22340 254p (дата обращения: 18.07.2025).
- 23. Shirk, G.J. Control of intrauterine fluid pressure during operative hysteroscopy / G.J. Shirk, R.J. Gimpelson // The Journal of the American Association of Gynecologic Laparoscopists. − 1994. − Vol. 1, № 3. − P. 229–233.

A.S. Podgornaya, A.Yu. Zaharko, O.V. Murashko, V.N. Kalachev INTRAVASCULAR ABSORPTION SYNDROME AS A COMPLICATION OF SURGICAL HYSTEROSCOPY

The article is devoted to the most formidable complication of hysteroresectoscopy - intravascular absorption syndrome. The analysis of literary data with determination of the causes of the syndrome, clinical manifestations, diagnostic aspects and treatment tactics is carried out. The frequency of occurrence of the syndrome is 0,20%. Clinical manifestations are characterized by the increase of neurological symptoms, which depend on the level of sodium in the blood and can lead to pulmonary edema, cerebral edema with possible lethal outcome. The main principle of treatment is correction of electrolyte disturbances, namely sodium. In case of development of acute kidney injury — timely treatment using hemodialysis, and in case of heart failure — extracorporeal membrane oxygenation.

Key words: monopolar and bipolar hysteroresectoscopy, intravascular absorption syndrome, hysteroscopy complications, intravasation of liquid diluents, electrolyte disorders

Поступила 05.08.2025